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Abstract--The phase interaction term in the momentum equations for the flow of a fluid-solid mixture 
is derived using a control volume/control surface approach. This approach has been used by the authors 
in an earlier work to obtain the solid phase stress. An extension of this approach provides a consistent 
derivation for the necessary constitutive equations for a laminar flow of a dilute fluid-solid mixture. 
A fundamental difference is observed between the present model and other models in the hterature. The 
diffusion/anti-diffusion phenomenon caused by the concentration gradient is discussed. The resulting 
governing equations are applied to the case of a vertical flow where the phase interaction term is first 
evaluated according to a previous model in the literature, and then to the one presently obtained. The 
resulting solutions show that a significant difference exists in the flow behavior described by the two 
solutions. 
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1. I N T R O D U C T I O N  

Mass and momentum balance equations for a fluid-solid mixture flow have been given in the 
literature as follows (e.g. Ishii 1975): 

Op s 
+ V. ( f u )  = 0, [la] 

Ot 

and 

,(Ou • Vu) p'g + m + V (cTD; p = [lb] 

ap r 

O--7 + V. (pry) = O, [lc] 

) p ~ - ~  + v"  Vv = p rg _ m + V .  [(1 - c)Tf]. [ ld]  

In the above, pS = psc and pf = PrO - c) are the partial densities of the solid and fluid phase, 
respectively, where c is the solid concentration and p, and pf are the solid and fluid material density, 
respectively; u and v represent the solid and fluid velocities, respectively; the phase interaction force 
per unit volume of mixture is denoted by m and the stress for the solid and fluid phase are "P and 
T f, respectively. In order to close the above equations, constitutive relations must be obtained for 
the phase interaction force and the phase stresses. 

Many models in the existing literature have adopted the above equations for two-phase flow 
problems. However, when it comes to the constitutive relations for the solid phase stress T' and 
the phase interaction m, there are many distinctly different models. For instance, consider a general 

tPresented, in part, at the 3rd Int. Syrup. on Liquid-Solid Flows; ASME Winter A. Mtg, Chicago, I11., U.S.A. (1988). 
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flow of a mixture of rigid particles and a Newtonian fluid. The phase stresses for such a flow have 
been modeled as 

and 

T ~ = -pSI + T s' [2a] 

T f = - p f l  + T f', [2b] 

where pS and pf are the phase pressures, I is the unit tensor and T s' and T f' are the deviatoric parts 
of the phase stresses. The solid phase pressure has been equated to the: (a) fluid phase pressure 
pr (Drew 1976); (b) averaged fluid pressure around the surface of a particle (Drew 1983; Givler 
1987); and (c) hydrostatic fluid pressure (Ahmadi 1987). The phase interaction term m has been 
modeled as 

m = n h + p V c ,  [3] 

where n is the number of particles per unit volume, h is the hydrodynamic force per particle and 
/~ has been equated to the: (a) solid phase pressure pS (Ishii 1975; Drew 1983); (b) fluid phase 
pressure pf  (McTigue et al. 1986; Givler 1987); and (c) hydrostatic fluid pressure (Ahmadi 1987). 

The above models do not differ because they describe different flow regimes. In fact, they are 
all intended for the most general flows of a fluid-solid mixture. This puzzling phenomenon can 
be attributed to the following reason. In the past, most two-phase flow models have been 
constructed mainly from principles of continuum mechanics. Mathematical consistency and 
physical plausibility are the requirements in this approach. All the above models have been 
considered to satisfy these requirements. 

From a micromechanical point of view, however, the solid phase is a collection of discrete 
particles. Therefore, the dynamics of the solid phase should depend on many "particulate" 
parameters, such as the particle Reynolds number. The mathematical formulation of the relation 
between particulate parameters and the constitutive relations is beyond the scope of continuum 
mechanics. On the other hand, in the micromechanical approach, all terms in the governing and 
constitutive equations are obtained from information at the level of individual particles. The final 
form of these equations obviously must still satisfy the constraint imposed by continuum 
mechanics. 

In an earlier work (Hwang & Shen 1989), the authors provided a derivation of the solid phase 
stress using a micromechanical approach. In that work, a control volume/control surface served 
as a convenient mental picture for constructing conservation laws. This same mental picture had 
been adopted previously by Prosperetti & Jones (1984) in their derivation of the momentum 
equations of a two-phase flow. Through this approach, the solid phase stress and the associate 
pressure term were first decomposed into collisional, kinetic and hydrodynamic parts. The 
hydrodynamic part was then derived based on the hydrodynamic force acting on individual 
particles. The result was identical to that of Batchelor (1970) and Batchelor & Green (1972), in 
which a volume averaging approach had beed used. This stress from hydrodynamic interaction was 
named the "particle-presence stress" following the terminology "stress due to the presence of 
particles" (Batchelor 1970). 

The essence of this earlier work by the authors was to provide an interpretation of the solid phase 
stress based on fundamental physical laws that operate at the particulate level. Such an 
interpretation provides the bridge necessary to link micro and macro quantities. It is therefore an 
essential part for modeling the governing equations of a two-phase flow, in which the dynamic of 
macro quantities are described. 

The present work is a continuation of the earlier work. Here, we extend the same approach 
utilized in Hwang & Shen (1989) to derive the constitutive relation for the phase interaction term 
m. The momentum equations are completely described in terms of the forces that act on the 
individual particles. These momentum equations are the same as those obtained in Prosperetti & 
Jones (1984). The assumptions used in Prosperetti & Jones (1984) are not necessary in the following 
analysis. For a dilute laminar flow with low particle Reynolds number, all forces acting on the 
particles are known explicitly. A simplified vertical flow problem is then solved in this special 
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regime. The solution of this problem is intended to demonstrate the importance of the micro- 
mechanical approach. 

2. DERIVATION 

Consider a mixture of a Newtonian fluid and rigid particles with uniform size. The fluid phase 
is assumed incompressible. The mass and momentum balance laws are given in [ l ad ] .  As discussed 
in Hwang & Shen (1989), the fluid and solid phase stress may be decomposed, respectively, as 

T f = T V + T t [4a] 
and 

T s = T ¢ + T k + T p, [4b] 

where T ~ is the fluid viscous stress, T r is the fluid turbulence stress (or Reynolds stress), T c is the 
collision/contact stress, T k is the kinetic stress (equivalent to the solid turbulence stress) and T p is 
the particle-presence stress resulting from the hydrodynamic forces acting on the particles. The 
physical interpretation of the fluid stress components is well-established. Similarly, the two 
components "l "¢ and T k in the solid stress have been derived in the literature of granular flows (e.g. 
Lun et al. 1984). The physical interpretation for T p was first given by Batchelor (1970) and 
Batchelor & Green (1972) using a volume averaging concept. The resulting stress has the following 
components: 

TP = ~o (fAoS,~nkrjdA -- fvodkZikrjdV),  [5] 

where V0 and A0 are the volume and the surface of a single particle, Z~, is the hydrodynamically- 
induced local stress at dA on the surface of a particle or at dV inside a particle, n k is the kth 
component of a unit outward normal on the particle's surface and rj is the j t h  component of the 
position vector of the infinitesimals dA or d V. Only one particle size V0 is considered. 

In Hwang & Shen (1989), a control volume/control surface approach is adopted to derive the 
particle-presence stress T p. An identical result to that shown in [5] was obtained. This control 
volume/control surface approach is consistent with the concept used in deriving T ¢ and T k. In 
addition, it gives an alternative interpretation of T p that is physically transparent. In Hwang & Shen 
(1989), two important results have also been derived after obtaining [5]. First, it was shown that 
the last term in [5] is related to a single particle's rotation: 

f = ~ 2 _ 1 akZikrjdV ~psR (e~lj~t+ Dtf~j flkDk6~j), [6] 
 OVo 

where R is the particle's radius and D is its angular velocity. In Babi6 (1989), this term has been 
shown to cancel with the rotational contribution in T k. Second, the solid phase pressure is derived 
based on the definition used in continuum mechanics, where 

p s  I s = - ~Tit, [7] 

in which the contribution from the particle-presence stress is 

- - - -  2 PP = 3 Vo (--P~k -- ~#elt6~k + 2#e~k)nkn~ sin 4~ dq~ d0. [8] 

The above applies to cases where the flow around the surface of the particles is laminar, and ~ 
is the absolute viscosity of the fluid. (In fact, if the flow is turbulent, [8] is still applicable if ~ is 
identified as the "eddy" viscosity.) If  the pressure and velocity field around a particle is known, 
the above equation may be integrated to give the particle-presence pressure for the solid phase 
explicitly. For a dilute incompressible flow of vanishing particle Reynolds number defined by 
Re = (pfRU)/#, where U is the relative velocity between the particle and the surrounding fluid, the 
above reduces to 

PP = ~ J0 p sin 4~ dq~ dO, [9] 

which is identical to what Givler (1987) proposed through a heuristic argument. The basic 
expression given by [8] may be used to model other flow regimes when [9] no longer applies. 
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We now proceed to the modeling of the phase interaction term m. The identical control 
volume/control surface approach used in deriving T p will be used here. All notations that follow 
represent local quantities in a single realization. Averaged quantities will be denoted explicitly. 

Consider the control volume V shown in figure la. The surface of V denoted by S is the control 
surface of the mixture. Particles which sit entirely inside the control surface are called "inner 
particles", while particles cut by the control surface are called "surface-particles". The "solid 
portion" of the control surface, Se, is defined by the intersection of the control surface and the 
surface particles. The remaining part of S is the "fluid portion" of the control surface. Forces acting 
on Se account for the solid phase stress and those on S - S~ account for the fluid phase stress. There 
are also forces acting on the interface between the fluid and the solid within the control volume 
V. This interface is denoted by Si in figure l a and consists of the entire surface of all "inner 
particles" and the portion of the surface interior to S of all the "surface particles". The total phase 
interaction force inside V, Sv m d V, is the total hydrodynamic force acting on S~. 

Let N be the number of inner particles in V and N'  be the number of inner as well as surface 
particles of V. The total hydrodynamic force acting on Si includes those that act on the whole 
particles, hk, k = 1 . . . . .  N, and those that act on the partial surfaces. Therefore 

fmdV=fs•'r.dSi 
V i 

k = l  i 

where Ai is the portion of the total surface particles' surface which is interior to the control volume; 
I; is the local stress tensor on the particles due to the hydrodynamic effect of the surrounding fluid 
flow; and fi is the unit outward vector from the solid phase. 

Let h p denote the integral of the surface force acting on any arbitrary volumetric portion Vp of 
a particle. In terms of the stress tensor I~ inside the particle induced by the hydrodynamic force 
on the surface of the particle, this resultant surface force may be expressed as 

dgp 
ds p 

= f  V. ~dVp, [11] 
Vp 

where Sp denotes the surface area of Vp. If one specifies Vp to be the outer or inner portion of a 
surface particle, as shown in figure l b, the corresponding hP becomes h °u or h i, respectively. As 
shown in [12], h i may be resolved into the forces on Ai and St, or 

h ~ = d~+ t, [12] 
as shown in figure lb. Therefore 

fA N" N" fi. ZdA~= ~ d~+= Z (h~--tk). [13] 
i k = N + l  k = N + l  

control volume V 

Figure la. Arbitrary control volume in a fluid-solid 
mixture flow. 

t 

Figure lb. Definition sketch of the surface forces acting 
on a surface particle. 
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By substituting [13] into [10], 

V N N' N' m dV= ~. h~+ ~. E , -  ~ t,. [14] 

In integral notation, [14] becomes 

fvmdV = fv ~dV,- fs fi" ZdS,, [15] 

where Vs is the total volume of the solid phase interior to the control volume and G = V. I2 is the 
total surface force per unit volume acting on a given infinitesimal volume d V in Vs. Equation [15] 
can be further reduced to J 

fvmdV=fvCGdV-fsfi'£,edS, [16] 

where c = 0 or 1 depends on whether a fluid or solid phase are in the corresponding infinitesimals, 
respectively. Applying the ensemble average, ( ), to the above equation yields 

fv<m>dv= fv <c >dV- fsfi.<cX>dS, [17] 

Introducing the volume/mass-weighted average {~,} = (c~)/(c) to the above equation and 
applying Gauss's theorem to the second term on the right, one obtains 

i 

Because {G} represents the hydrodynamic force per unit volume in a particle, hence 

{G} = {h} [19l 
v0' 

where {h} is the mass-weighted average of the total hydrodynamic force acting on a particle that 
occupies the infinitesimal d V in space. The above is an approximation that applies when the length 
scale of Vc is much larger than the particle's diameter, as shown in the appendix. This 
approximation is consistent with the derivation of the collisional and kinetic stresses, T ¢ and T k 

respectively, in the granular flow literature, and the hydrodynamic solid phase stress, T p, in Hwang 
& Shen (1989). Substituting [19] into [18] and removing the integral sign yield 

(m)  = ~ {h} - V. ((c){'£}). [20] 

In the above equations X represents the hydrodynamically-induced stress on the surface S,. This 
surface, as previously mentioned, is the area of intersection between the surface particles and the 
control surface. Therefore, the term {X} is exactly the particle-presence stress T p defined in [4b]. 
At this point all variables are averaged quantities, one may remove the ( ) and { } in [20] to 
yield a simpler expression: 

m = ~00 h - V" (cTP), [21] 

where c/V o = n is the number of particles per unit volume. Equation [21] applies to flows of a 
general fluid-solid mixture. The only restriction is that particles are uniform in size and shape. This 
restriction may be removed with little additional work. 

The hydrodynamic force, h, acting on a single particle is, in general, more complicated than the 
drag force f. For a dilute mixture, h is approximated by hydrodynamic forces on a single particle 
in an infinite fluid flow. With the additional assumption of a vanishing particle Reynolds number, 
Maxey & Riley (1983) have rigorously derived such forces for a general flow field. Based on their 
work, Hwang (1989) has obtained a simpler expression as follows: 

h = fs + f~ + VoV" I f, [22] 



50 G.J. HWANG and H. H. SHEN 

where fs is the Stokes drag acting on a particle; and fa stands for the additional forces including 
the added mass effect, the Basset force (Basset 1888) and the Saffman force (Saffman 1965) due 
to the fluid inertia. 

To the authors' knowledge, a solution does not exist yet for the hydrodynamic force acting on 
a particle for the case of a general transient flow with finite solid concentration. An explicit solution 
for h, given in [22], therefore awaits future development in fluid mechanics. 

In conclusion, the phase interaction term obtained from the present model is given in [21]. The 
result applies to a general flow of a fluid-solid mixture with uniform particle size. In the case of 
a dilute mixture with low particle Reynolds number, the present model gives 

¢ 
m = 7-7 (fs + fa) + cV. T f -  V'  (cTP). [23] 

v0 

3. DISCUSSIONS ON THE G O V E R N I N G  EQUATIONS 

A fundamental difference is observed when comparing [3], where m = n h + fiVc, with [21], where 
m = n h  - V' (cTP). However, since m is only one of the terms in the momentum equations, one 
naturally suspects that through different bookkeeping for the momentum balance, perhaps the 
individual terms such as m and T s are different, but the resulting equations are the same. After all, 
the control volume/control surface is one of the many ways that may be used to construct 
conservation laws. In order to see whether the bookkeeping might be the problem, we compare 
the resulting momentum equations with another set of equations obtained previously. 

Substituting [4b] and [21] into [lb], the solid phase momentum equation is obtained as 

s/0 {u} _ ) C h  V0 [24] p ~--~-~- + {u}' V{o} = pSg + V "[c(T ¢ + Tk)] + , 

where T k-- --ps{U"U"} and u " =  u -  {u} is the fluctuation velocity of a particle. Substituting [4a] 
and [21] into [ld], the fluid phase momentum equation is obtained as 

,(o_ {v} ) 
p t---~- + {v} • V{v} = p f g - C h  . Vo + V (cT p) + (1 c)V- T f -  TfVc, [25] 

where T f = T v - pf{v"v"} is the total fluid stress including both the viscous stress and the Reynolds 
stress. In the latter, v" = v - {v} is the turbulence velocity of the fluid phase. For a dilute laminar 
flow with vanishing particle Reynolds number, we substitute [22] into [24] and [25] and drop T ¢ 
and T k to obtain 

o,(O{u} ) c t--~-- + {u}' V{u} = p~g + ~ (Is + f.) - cVpr+ ¢V" T r' [26l 

and 

f/0 {v} / ¢ 
p t - -  ~ -  + {v}' V{v}/= pfg - ~ ( f s  + fa) + (1 -- c ) ( - - v p r +  V" T f') 

+ V" c(T p' - T f') - Vc(p p - p r ) .  [27] 

In the above, T r' = p[{Vv} + {Vv} T] is the deviatoric part of the fluid stress and T p' is the deviatoric 
part of the particle-presence stress. 

Equations [26] and [27] are different from those obtained in the previous literature. [Except that 
from the work of Prosperetti & Jones (1984), in which these two equations can also be deduced.] 
For instance, the momentum equations in McTigue et al. (1986) are 

pS + {U} • V{U} =pSg+-Voo(S+fa)-¢VpP-(pP-pf)V¢ [28] 

for the solid phase and 

,(0 {v} ] ¢ 
p ~--77- + {v}. V{v}/=pfg--Foo(fS+L)+v.[2.( l+~c)Dd-vp'+cVp'  [291 

for the fluid phase. In which, Dr is the strain-rate tensor defined by ½[V{v} + (V{v})T]. 
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There are a number of differences between the models described by [26] and [27] and the model 
described by [28] and [29]. One of the main contrasts between the two models is the term 
- ( p P - p r ) V c .  In the present model, this term appears in the fluid momentum equation, [27], as 
part of the last term on the right. In the model given by McTigue et al. (1986), this term appears 
in the solid momentum equation [28]. Depending on the relative value of the solid and fluid phase 
pressure, this term can be positive, negative or zero. The mathematical significance of this term 
was first discussed by Stuhmiller (1977). Numerical instability can occur if phase pressures are 
equal. Givler (1987) discussed this term from a physical point of view. 

When the solid phase pressure is different from the fluid phase pressure, the term _ (pp -p f )Vc  
will produce an equivalent force in the momentum equation where this term appears. According 
to McTigue et al. (1986), as well as Givler (1987), this term is in the solid momentum equation. 
In the case of an inviscid flow around the particles, p p - p f = - ~r(V - u) :, the direction of this force 
is therefore identical to Ve. This "anti-diffusive" phenomenon was considered in Givler (1987) as 
non-physical. 

In the present model, there is no - ( p P - p f ) V c  term in the solid momentum equation. Hence 
the difference in the phase pressure pP _ p r  at first glance will not force the solid to move in or 
opposite to the direction of Vc. However, the term - ( p P - p f ) V e  appears in the fluid equation, 
hence it will force the fluid phase to move in or opposite to the direction of Ve. In the case of an 
inviscid flow, pP _ p r =  _ lp f (v_  u)2, the fluid phase will then move in the direction of Ve. In the 
case of a Stokes' flow, pP _ p r =  9pr(v_ u)2, the fluid phase will move opposite to Vc. A direct 
physical explanation for this phenomenon follows. 

Consider a dilute flow of a Newtonian fluid with spherical particles. The phase velocities are 
different, but both the fluid and solid phases are moving uniformly. Initially, the fluid flow is steady 
and uniform without a velocity gradient and any other inertia effects, therefore, terms such as fa, 
T f' and Dr are not present, and Vp f is in the flow direction. As shown in figure 2, assume that a 
small perturbation of the uniform particle concentration is introduced, so that the concentration 
in region A is greater than that in region B. If, later, the particles are forced to move from region 
A to region B, diffusion results. The opposite direction corresponds to anti-diffusion. In this given 
flow condition, the only possible lateral forces in the fluid-solid momentum equations are created 
by fs and Vc. Initially, fs is in the flow direction also. The Vc term is present as soon as the 
perturbation is introduced. 

Because the flow is dilute, the hydrodynamic interaction of the fluid and solid phase is closely 
approximated by the superposition of individual particles in an infinite fluid. Consider first that 
the flow is in the Stokes regime. The fluid pressure at the surface of the spherical particle is (Chester 
& Breach 1969) 

P - P ~  = -3(1 + ] Re) cos 0 + ~ Re cos 2 0 "At- O(Re 2 log Re), [30] 
pU 
R 

fluid flow 

r~ion A 

O 0  o 
O0  Q 

I I I 
region B 

0 0 0 0  
0 O0 0 

O 

O O 

Figure 2. A uniform fluid-solid flow with a concentration gradient. 
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where p~ is the undisturbed fluid pressure, U and Re are defined above [9] and the angle 0 is 
measured from the direction of the relative velocity. On the basis of a single particle's analysis, 
the average fluid pressure at the surface of the particle is increased from p~ by 

f o : ~ f : ( P - p o o ) R 2 s i n O d O d ~  
= Re ~ + O (Re 2 log Re). [3 l] 

2~f~R2s inOdOdq~ 
do 

The tendency to increase the fluid pressure will only diminish to zero at infinite distance. Since each 
particle increases the surrounding fluid pressure, superposition implies that the fluid pressure will 
increase more as the particle concentration increases. Therefore, fluid will flow from the high 
particle concentration region to regions of low particle concentration. Namely, from region A to 
region B in figure 2 or opposite to the direction of Vc. Similarly, if the flow is in the inviscid regime, 
by applying the potential flow theory and Bernoulli's equation, the fluid pressure surrounding a 
particle is reduced from the undisturbed pressure. The higher the particle concentration, the greater 
is this reduction. Therefore, fluid is driven from the higher fluid pressure zone, where the particle 
concentration is low, to the low fluid pressure zone, where the particle concentration is high, or 
in the direction of Vc. Therefore, the diffusion/anti-diffusion takes place in the fluid phase. The 
particles will also move. However, their motion will be produced by fs and will move in the direction 
of the fluid's motion. If the above argument is correct, it means that perturbation of concentration 
will induce secondary flows in the concentration gradient direction. 

The above arguments are based on the basic principles of fluid mechanics for a uniformly 
flowing, infinite fluid surrounding a single particle. Its conclusion is applicable to extremely dilute 
systems. To experimentally verify the diffusion/anti-diffusion phenomena is not easy because in 
most experimental setups, the presence of boundaries will create additional forces from the flow 
gradient and curvature effect (such as the Saffman's force). The presence of other particles also 
affect the applicability of the above results. The clever design of an experiment that will test the 
Vc effect alone is not obvious. 

4. A SPECIAL CASE 

The discussion on diffusion/anti-diffusion shows that a fundamental difference exists between the 
present model and a previous model. In this section we study another special case, which is intended 
to demonstrate that a qualitatively different solution may be obtained for a fluid-solid flow if the 
phase interaction term m is modeled differently from that developed in this investigation. To show 
this, a boundary value problem is solved using two different models: model A, based on [3]; and 
model B, based on [21]. In [3], • is equated to pS following Ishii's (1975) model. 

A Poiseuille flow of the mixture through a vertical two-dimensional channel will be studied in 
this section. Since the major interest here is to compare the two different models of m as described 
by [3] and [21], all other terms in the governing equations and constitutive equations for T s, are 
kept the same in the comparison. 

For a Poiseuille flow the continuity equation provides no information for it is automatically 
satisfied. Only momentum equations need to be considered. Model A, which corresponds to [3], 
can be expressed as follows, where x is parallel to the channel and gravity direction, and y is 
perpendicular to the channel. 

Momentum equation for the solid phase: 
x-component, 

0 =  - p , c g + -~-~ ( v , - ux ) - c -~  \-~y -~-fy + C ~y 2 ) ; [32a] 

and 
y-component, 

ap, 
0 = - c [32b] a y  
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Momentum equation for the fluid phase: 
x-component,  

0 = --PRO -- e)g -- ~ (Vx -- Ux) (1 [-~v x t3(1 -- c) ~2Vx-} 

and 
y-component,  

[32c] 

6c 6c 
0 -Ps  ~y = +pr~yy - (1 - c) . [32d] 

where g is the gravitational acceleration and Vx and Ux are the velocity components 
in the x-direction for the fluid phase and solid phase, respectively. 

Similarly, equations for model B based on the present modeling of  m given in [21] 
can be expressed as follows. 
Momentum equation for the solid phase: 

x-component,  

9#c apf ~2vx . [33a] 
0 = --pscg + - '~ (Vx  -- Ux) -- C~x + cg Oy 2 , 

and 
y-component,  

0 = - c t3pf [33b] ay" 

Momentum equation for the fluid phase: 
x-component,  

9#c ~ 32Vx dps 
0=-pf(1-c)g-T (Vx-U )+c -c TT-cT; 

5# ( Sv~ Oc ~2v~'~ ~Pr 
+ --~- \-~-y ~y + c ~--~-) - (1 -- c) ~--~ 

F OVx t~(1 -- c) 82Vx-] 
[33c] 

U X 
and ux* = / w  2 ~ ,  

k---~ Pfg ) 

above  equat ions  may  be solved 

us has an algebraic relation with vs for both models. 
Using the following non-dimensional variables, 

where w is the width of the two-dimensional channel, the 
analytically. 

and 
y-component,  

apf aps c3c 0(1 - c) (1 - c) ~yf [33d] °=c -c -psry-Pf 0--7- 
One can prove easily that the solid volume fraction c is constant with respect to y for both models. 
In addition, ~ps/dx is equal to ~pr/~x in this problem. The boundary conditions associated with 
the above equations are vx = 0 at the wall and ~Vx/~y = 0 at the centerline. The solid phase velocity 
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The solution from model A gives 

v:= =(, - 

and 

l U*x=V'x + 

The fluid velocity v* from model B is identical to that from model A. The solution for u~* of model 
B is 

u , .  ] 

Comparisons between models A and B can be deduced from the above solutions. As shown in 
figure 3, the effect of P* on u* - v~* is the same for both models. Namely, as p* increases from 
the buoyant case to the settling case, u * -  v~* decreases. The pressure gradient, however, has a 
totally different influence on the two models. With an increasing pressure gradient, the phase 
velocity difference increases slightly according to model B, while it decreases rapidly according to 
model A. Consequently, in model A, settling particles can move ahead of the fluid and buoyant 
particles can lag behind the fluid. In model B, settling particles lag behind the fluid (unless the 
pressure gradient approaches infinity) and the buoyant particles always move ahead of the fluid. 
This highlights the qualitative difference between the two models that results solely from the 
interaction term m. 

The above solution is a simplified version of a real vertical fluid-solid flow. Because the 
hydrodynamic force on the particles is approximated by the drag force only, near-wall phenomena 
cannot be accurately modeled. This example only serves as a demonstration. Namely, to show that 
constitutive relations significantly impact upon the qualitative behavior of the governing equations. 

5. CONCLUSIONS 

In an earlier work by the authors, the control volume/control surface approach was introduced 
to the flow of a fluid-solid mixture to formulate the solid phase stress. This approach is extended 
in the present study to obtain the phase interaction in the momentum equations. A consistent 
procedure is thus developed to derive the governing equations for a fluid-solid flow in terms of 
micromechanical information. 
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Figure 3. Effect of density ratio and pressure gradient on the phase velocity difference. 
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When the mixture is flowing in a laminar regime and when the mixture is dilute with vanishing 
particle Reynolds number, the system of equations are completely modeled. The resulting equations 
are different from many existing models. 

One significant difference in the present governing equations from some of those derived 
previously is the diffusion/anti-diffusion phenomenon discussed first by Givler (1987). The Vc term 
that occurs due to the phase pressure difference appears in the fluid momentum equation instead 
of the solid momentum equation. From a physical explanation, it is believed that the trend 
predicted by the present model is reasonable. However, experimental verification is desirable. 

The derived governing equations are applied to solve a simplified laminar vertical flow problem. 
Two different phase interaction models are used to test their impact on the flow behavior. A 
qualitative difference in the solution is observed. This emphasizes the importance of a consistent 
procedure, that utilizes micromechanics, to derive every term in the governing equations. 

In this work, only the momentum equations are considered. The same approach should be 
extended to the derivation of the terms in the energy equations. Such an extension is necessary when 
the particle's inertia becomes important and/or the fluid becomes turbulent. We plan to discuss 
this in a subsequent article. 
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A P P E N D I X  

In [19] it is given that the average hydrodynamic force per unit volume at a point in space is 
equal to the average total hydrodynamic force per particle occupying that point divided by the 
particle's volume, 

{K} = {h___}} [19] 
r,0 

This is an approximation that applies when the length scale of  the concentration gradient is much 
larger than the particle's diameter. The proof  is given below. 

Consider a point P in space, as shown in figure A1. In n realizations when P is occupied by a 
particle, the hydrodynamic force acting on these n particles are represented by hi, h2 . . . . .  h,. By 
definition, 

1 " {h} = ~ ,E h~ 

) 6dV 
~ i=  V 0 i 

Ps[a~ - g + (co, x r)] d V 
~" Hi= V 0 

g) + cb~ x fvor dV + co, 
' i  

= - ps V0(a~ - g ) ,  [A.1I 
Y/i=l 

where u~ is the velocity of the center of the ith particle and coi is its rigid body rotation velocity. 
In the above, Sv0 r dV = 0 has bccn utilized. The equation of motion for an infinitesimal volume 
dV at P occupied by a particle is V. 2: = p,(a -g) = p,[a ° -g + (co x r)], where obviously V. 2: is 
evaluated at P and u ¢ is the velocity of the center of a particle. Hence, the above can bc further 
reduced to 

{h} = n ,_--, [(V" 2 : ) , -  ps(co, x r)] 

= Vo{V' Z } -  p~Vo{co x r} 

= v0{v. z} - ps v0({o~ × r} - {r. coco} + {co "cord 

= Vo{V" 2:} - p~ Vo({Ch } x {r} - {r}. {coco} + {co. co}{r}). [A.2] 

dV 

Figure AI. An infinitesimal volume at a point in space. 
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In the above, the fact that no correlation between the position vector r and the rigid particle 
rotation co has been applied. 

The mass-weighted position vector {r} is the ensemble average of all vectors ri from the center 
of a particle that occupies dV in the ith realization to that point at dV (figure A1). If there is 
concentration gradient, 

{r }  = { [ P ( r ) } ,  [ A . 3 1  

where [ is a uniformly distributed position vector and P(~) is the probability density function of 
having [ in dV. Expanding P([) into Taylor series and truncating at the first order, 

Vc 
P(i) = 1 - [ . - - .  [A.4] 

C 

Utilizing the following non-dimensionalization: 

V c  ~, = _ , c V ' c '  

R ' Cav e Cav e 

L 

where L is the characteristic length of the concentration gradient, we have 

P(i) 1 R~, V'c' 
. . . . .  [A.S] 

L c' 

Since all non-dimensional terms are of the same order, P(~)~ 1 as R/L ~0 and, therefore, {r} = 0 
as R/L ~0. Thus, from [A.2], {V. ,~} = {K} = {h}/V0, as given in [19]. 

It is worth noting that in the current granular flow literature, the derivation of the coUisional 
stress, T c, and the kinetic stress, T k, also adopted the same approximation. Namely, the 
concentration gradient is assumed to have a length scale much larger than the particle's diameter. 
This assumption is used when letting the radial distribution of the neighboring particles be an 
isotropic function of the local concentration at a point only. Furthermore, in deriving the solid 
phase stress (Hwang & Shen 1989), the particle's location on a control surface has been assumed 
as equally distributed along the diameter of a particle. This is equivalent to the assumption of a 
large length scale of the concentration grandient. The current derivation of the phase interaction 
term is therefore consistent with the other constitutive relations in the governing equations. The 
application of these constitutive relations are thus restricted to the case where the concentration 
gradient has a much larger length scale than the particle's diameter. 
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